
STM32 Embedded Software

Overview



STM32 Embedded Software Offer 2

ST Offering. Free

Partners Offer

Abstraction 

Level

Portability Level

STM32Snippets

Standard 

Peripheral

Libraries

STM32Cube HAL

Mbed Core
« C » partners

Micrium, SEGGER, 

HCC, ….

Virtual 

Machines

with partners
.Net, Java

IS2T, Oracle, 

Mountaineer, .…

STM32 Device

-specific

f.i.: STM32F072

STM32 Series

-specific

f.i.: STM32F1

STM32 Family

-specific

Cortex-M based

MCUs

-specific

Any MCU Beyond MCU

world

STM32Cube LL

STM32 Series and/or 

Device-specific

http://www.st.com/stm32snippets
http://www.st.com/web/catalog/tools/FM147/CL1794/SC961/SS1743/LN1734
http://www.st.com/web/catalog/tools/FM147/CL1794/SC961/SS1743/LN1897
http://developer.mbed.org/platforms/?pvend=10
http://www.st.com/web/en/catalog/tools/FM147/CL1794/SC961/SS1743/LN1900
http://www.st.com/web/en/catalog/tools/FM147/CL1794/SC961
http://www.st.com/web/catalog/tools/FM147/CL1794/SC961/SS1743/LN1897


Focus on ST’s Offer (Free)

3



STM32Snippets

• What is it ?

• A collection of code examples, directly based on STM32 peripheral registers, available in 

documentation and as software bundles

• Target Audience

• low level embedded system developers, typically coming from an 8 bit background, used to 

assembly or C with little abstraction

4

Portability
Optimization

(Memory & Mips)
Easy Readiness Hardware coverage

+++ +

• Features:

• Highly Optimized

• Register Level Access

• Small code expressions

• Closely follows the reference manual

• Debugging close to register level

• Limitations:

• Specific to STM32 devices, not portable directly 

between series

• Not matching complex peripherals such as USB

• Lack of abstraction means developers must 

understand peripheral operation at register level

• Available (today) on STM32 L0 and F0 series



Standard Peripheral Libraries (SPL) 5

Portability
Optimization

(Memory & Mips)
Easy Readiness Hardware coverage

++ ++ + ++ +++

• What is it ?

• Collection of C Libraries covering STM32 peripherals

• Target Audience

• Embedded systems developers with procedural C background. All existing STM32 customer 

base prior to the STM32Cube launch, willing to keep same supporting technology for future 

projects, and same STM32 series.

• Features:

• Average optimization, fitting lots of 

situations

• No need for direct register manipulation

• 100% coverage of all peripherals

• Easier debugging of procedural code

• Extensions for complex middleware such 

as USB/TCP-IP/Graphics/Touch Sense

• Limitations:

• Specific to certain STM32 series.

• No common HAL API prevents application 

portability between series

• Middleware libraries may not be unified for each 

series

• Doesn’t support forward STM32 series starting 

with STM32 L0, L4 and F7



• Target Audience

• Hardware Abstraction Layer (HAL) APIs: embedded system developers with a strong 

structured background. New customers looking for a fast way to evaluate STM32 and easy 

portability

• Low-Layer (LL) APIs: low level embedded system developers, typically coming from an 8-bit 
background, used to assembly or C with little abstraction. Stronger focus on customers 
migrating from the SPL environment.

STM32Cube - Embedded software 6

• What is it ?
• Full featured packages with drivers, USB, TCP/IP, Graphics, 

File system and RTOS

• Set of common application programming interfaces, ensuring 
high portability inside whole STM32 family

• Set of APIs directly based on STM32 peripheral registers

• Set of initialization APIs functionally similar to the SPL block 
peripheral initialization functions

Introduction



7STM32Cube - Embedded software
Architecture overview

• Three entry points for the user 

application:

• Middleware stacks

• HAL APIs

• LL APIs

• Possible concurrent usage of HAL 

and LL 

• Limitation: LL cannot be used with HAL for 

the same peripheral instance. Impossible to 

run concurrent processes on the same IP 

using both APIs, but sequential use is 

allowed

• Example of hybrid model: 

• Simpler static peripheral initialization with HAL

• Optimized runtime peripheral handling with LL 

calls

STM32Cube Embedded Software packages



STM32Cube - Embedded software 8

Portability
Optimization

(Memory & Mips)
Easy Readiness Hardware coverage

+++ + ++ +++ +++

• Limitations:

• May be challenging to low level C programmers in the embedded space. 

• Higher portability creates bigger software footprints or more time spent executing 

adaptation code

• Features:

• High level and functional abstraction

• Easy port from one series to another

• 100% coverage of all peripherals

• Integrates complex middleware such as USB/TCP-

IP/Graphics/Touch Sense/RTOS

• Can work with STM32CubeMX tool on the PC to 

generate initialization code

HAL APIs



STM32Cube - Embedded software 9

Portability
Optimization

(Memory & Mips)
Easy Readiness Hardware coverage

+ +++ + ++ ++

• Features:

• Highly Optimized

• Register Level Access

• Small code expressions

• Closely follows the reference manual

• Debugging close to register level

• Peripheral block initialization APIs

• Initialization, de-initialization and default initialization routines

• SPL-Like functionally speaking

• More optimized than SPL, fitting lots of situations

• No need for direct register manipulation

• Easier debugging of procedural code

• Limitations:

• Specific to STM32 devices, not portable directly between series

• Not matching complex peripherals such as USB

• Lack of abstraction for runtime means developers must understand peripheral operation at register level

• Available on STM32L4, L0 and F0 series

• Peripheral block initialization APIs have the same limitations as the SPLs (except availability considerations)

Low-Layer APIs



ST Embedded software offer – Comparison

Offer Portability
Optimization

(Memory & Mips)
Easy Readiness

Hardware

coverage

STM32Snippets +++ +

Standard Peripheral Library ++ ++ + ++ +++

STM32Cube HAL 

APIs +++ + ++ +++ +++

LL 

APIs + +++ + ++ ++

14



ST Embedded software offer – Positioning 11

STM32Snippets

Standard Peripheral Libraries

STM32 Device

-specific

f.i.: STM32F072

STM32 Series

-specific

f.i.: STM32F1

STM32 Family (HAL)

Portability Level

STM32Cube HAL

(Hardware Abstraction Layer)

TCP/

IP

FAT 

File

Sys.

Gfx

USB

Host / 

Device

STM32Cube Middleware level

RTOS

STM32Cube Embedded Software packages

Touch

Abstraction 

Level

TCP/

IP
FAT 

File

Sys.Gfx

USB

Host / 

Device

RTOS
Touch

Libraries, released independently

STM32Cube LL

(Low-Layer APIs)

STM32 Series and/or 

Device-specific (LL)



Availability 12

Offer

Available for STM32

STM32Snippets Now N.A. N.A. N.A. N.A. N.A. Now N.A. N.A.

Standard Peripheral 

Library
Now Now Now Now Now N.A. N.A. Now N.A.

STM32Cube HAL Now Now Now Now Now Now Now Now Now

STM32Cube LL Now
Q1 

2017
Now

Q1 

2017

Q1

2017

Q4 

2016
Now Now Now

http://www.st.com/stm32f4
http://www.st.com/stm32f4


What solution to choose ? An FAQ

1. I want to use a small footprint MCU, what should I use?
Abstraction has a cost. Therefore, if you need to take benefit from every single bit of memory, 
STM32Snippets or STM32Cube LL will be the best choice.

2. I come from 8-bit MCU world, what should I use?
If you prefer direct register manipulation then the STM32Snippets or STM32Cube LL would be a good 
starting point. However, if you prefer structure ‘C’ level programming, then we recommend using the 
STM32Cube HAL or SPL.

3. I today use SPL on STM32F103. Should I switch to STM32Cube?
If you intend to use only MCUs that are part of the same series in the future (in this case STM32 F1 
series), then you should remain using SPL. 

If you plan to use different STM32 series in the future then we recommend considering STM32Cube as 
this will make it much easier to move between series.

4. I need a mix of portability and optimization. What can I do?
You can use STM32Cube HALs and replace some of the calls with your specific optimized 
implementations, thus keeping maximum portability and isolating areas that are not portable, but 
optimized.

HALs and LL being partially usable concurrently (no possible concurrent runtime HAL and LL processes 
for the same peripheral), it is also possible to use a hybrid HAL and LL implementation to get the same 
advantages as mentioned above.

13



Migrating between offers 14

To

From STM32Snippets SPL STM32Cube

STM32Snippets

Easy within same STM32 

series
Ex: Between STM32F072 and STM32F030

No simple migration path. 

Application must be rewritten

HAL API: No simple migration 

path. Application must be 

rewritten

Almost not possible between 

different series
Ex: Between STM32F072 and STM32L053

Low-Layer API: Easy within 

same STM32 series 
Ex: Between STM32F072 and STM32F030

Standard Peripheral 

Library (SPL)

Some (but not all) SPL 

functions can be replaced with 

Snippets

Easy within same STM32 

series 
Ex: Between STM32F401 and STM32F429

HAL API: No simple migration 

path. Application must be 

rewritten

Difficult between different 

STM32 series
Ex: Between STM32F100 and STM32F407

LL API: functionally equivalent 

functions vs SPL peripheral 

initialization functions

STM32Cube 

embedded

software 

package

HAL API

Some (but not all) HAL 

functions can be replaced with 

Snippets

No simple migration path. 

Application must be rewritten

HAL: Yes, across all STM32 

families

LL API

LL calls equivalent to snippets 

when addressing the exact 

same peripheral

SPL block peripheral 

initialization functions have 

functionally equivalent 

functions in LLs

LL API: Difficult between 

different STM32 series
Ex: Between STM32F407 and STM32L476



Thank you 15

www.st.com/stm32embeddedsoftware

/STM32 @ST_World st.com/e2e

http://www.st.com/web/en/catalog/tools/FM147/CL1794/SC961/SS1743

